Nonparametric inference of the hemodynamic response using multi-subject fMRI data
نویسندگان
چکیده
Estimation and inferences for the hemodynamic response functions (HRF) using multi-subject fMRI data are considered. Within the context of the General Linear Model, two new nonparametric estimators for the HRF are proposed. The first is a kernel-smoothed estimator, which is used to construct hypothesis tests on the entire HRF curve, in contrast to only summaries of the curve as in most existing tests. To cope with the inherent large data variance, we introduce a second approach which imposes Tikhonov regularization on the kernel-smoothed estimator. An additional bias-correction step, which uses multi-subject averaged information, is introduced to further improve efficiency and reduce the bias in estimation for individual HRFs. By utilizing the common properties of brain activity shared across subjects, this is the main improvement over the standard methods where each subject's data is usually analyzed independently. A fast algorithm is also developed to select the optimal regularization and smoothing parameters. The proposed methods are compared with several existing regularization methods through simulations. The methods are illustrated by an application to the fMRI data collected under a psychology design employing the Monetary Incentive Delay (MID) task.
منابع مشابه
Evaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults
Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...
متن کاملA Spatiotemporal Nonparametric Bayesian Model of Multi - Subject Fmri Data
In this paper we propose a unified, probabilistically coherent framework for the analysis of task-related brain activity in multi-subject fMRI experiments. This is distinct from two-stage “group analysis” approaches traditionally considered in the fMRI literature, which separate the inference on the individual fMRI time courses from the inference at the population level. In our modeling approac...
متن کاملGroup-level impacts of within- and between-subject hemodynamic variability in fMRI
Inter-subject fMRI analyses have specific issues regarding the reliability of the results concerning both the detection of brain activation patterns and the estimation of the underlying dynamics. Among these issues lies the variability of the hemodynamic response function (HRF), that is usually accounted for using functional basis sets in the general linear model context. Here, we use the joint...
متن کاملA semi-parametric model of the hemodynamic response for multi-subject fMRI data
A semi-parametric model for estimating hemodynamic response function (HRF) from multi-subject fMRI data is introduced within the context of the General Linear Model. The new model assumes that the HRFs for a fixed brain voxel under a given stimulus share the same unknown functional form across subjects, but differ in height, time to peak, and width. A nonparametric spline-smoothing method is de...
متن کاملLocally Estimated Hemodynamic Response Function and Activation Detection Sensitivity in Heroin-Cue Reactivity Study
Introduction: A fixed hemodynamic response function (HRF) is commonly used for functional magnetic resonance imaging (fMRI) analysis. However, HRF may vary from region to region and subject to subject. We investigated the effect of locally estimated HRF (in functionally homogenous parcels) on activation detection sensitivity in a heroin cue reactivity study. Methods: We proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2012